Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898554

RESUMO

Citrus essential oils (EOs) have shown significant antibacterial activity. The present study was undertaken to evaluate the antibacterial activity of the peel oils of Citrus microcarpa and C. x amblycarpa against Escherichia coli. The minimum inhibition concentration (MIC) was determined by using the broth microdilution assay. The checkerboard method was used to identify synergistic effects of the EOs with tetracycline, while bacteriolysis was assessed by calculating the optical density of the bacterial supernatant, crystal violet assay was used to assess their antibiofilm. Ethidium bromide accumulation test was employed to assess efflux pump inhibition. Electron microscope analysis was performed to observe its morphological changes. The EOs of C. microcarpa and C. x amblycarpa were found to contain D-limonene major compound at 55.78% and 46.7%, respectively. Citrus microcarpa EOs exhibited moderate antibacterial against E. coli with a MIC value of 200 µg/mL. The combination of C. microcarpa oil (7.8 µg/mL) and tetracycline (62.5 µg/mL) exhibited a synergy with FICI of 0.5. This combination inhibited biofilm formation and disrupt bacterial cell membranes. Citrus microcarpa EOs blocked the efflux pumps in E. coli. Citrus microcarpa EOs demonstrated promising antibacterial activity, which can be further explored for the development of drugs to combat E. coli.


Assuntos
Citrus , Óleos Voláteis , Bacteriólise , Escherichia coli , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Óleos Voláteis/farmacologia , Biofilmes
2.
Appl Biochem Biotechnol ; 195(11): 6653-6674, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36913097

RESUMO

Endophytes associated with medicinal plants are a potential source of valuable natural products. This study aimed to evaluate the antibacterial and antibiofilm activities of endophytic bacteria from Archidendron pauciflorum against multidrug-resistant (MDR) strains. A total of 24 endophytic bacteria were isolated from the leaf, root, and stem of A. pauciflorum. Seven isolates showed antibacterial activity with different spectra against four MDR strains. Extracts derived from four selected isolates (1 mg/mL) also displayed antibacterial activity. Among four selected isolates, DJ4 and DJ9 isolates exhibited the strongest antibacterial activity against P. aeruginosa strain M18, as indicated by the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) (DJ4 and DJ9 MIC: 7.81 µg/mL; DJ4 and DJ9 MBC: 31.25 µg/mL). 2 × MIC of DJ4 and DJ9 extracts was found to be the most effective concentration to inhibit more than 52% of biofilm formation and eradicate more than 42% of established biofilm against all MDR strains. 16S rRNA-based identification revealed four selected isolates belong to the genus Bacillus. DJ9 isolate possessed nonribosomal peptide synthetase (NRPS) gene, and DJ4 isolate possessed NRPS and polyketide synthase type I (PKS I) gene. Both these genes are commonly responsible for secondary metabolites synthesis. Several antimicrobial compounds, including 1,4-dihydroxy-2-methyl-anthraquinone and paenilamicin A1, were detected in the bacterial extracts. This study highlights endophytic bacteria isolated from A. pauciflorum provide a great source of novel antibacterial compounds.


Assuntos
Antibacterianos , Bactérias , RNA Ribossômico 16S/genética , Bactérias/genética , Antibacterianos/química , Biofilmes , Testes de Sensibilidade Microbiana
3.
PeerJ ; 8: e8093, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31915568

RESUMO

The aims of this work are to isolate bacterial symbionts from nudibranchs and subsequently to determine anti-Methicillin resistant Staphylococcus aureus (MRSA), cytotoxicity and anti-Herpes simplex virus type 1 (HSV-1) activities of bio compounds. A total of 15 species of nudibranchs were collected from Karimunjawa and five species from Bali, respectively. A total of 245 bacteria isolates were obtained. The anti-MRSA activity screening activity indicated two active bacteria. Ethyl acetate extracts from supernatants, indicating extracelullar compounds, showed an inhibition zone against MRSA at concentrations of 500-1,000 µg/ml. DNA sequence analysis showed that the strain KJB-07 from Phyllidia coelestis was closely related to Pseudoalteromonas rubra, whereas the strain NP31-01 isolated from Phyllidia varicosa was closely related to Virgibacillus salarius. The extract of Pseudoalteromonas rubra was cytotoxic to Vero cells at a concentration of 75 µg/ml. The extract of V. salarius presented no cytotoxicity at concentrations of 5-1,000 µg/ml. No anti HSV-1 was observed for both isolated bacteria. This is the first study describing research on anti-MRSA, cytotoxicity and anti HSV-1 activity of bacterial symbionts from the viscera of nudibranch. Compounds produced by Pseudoalteromonas rubra and V. salarius, had potential anti-MRSA activity. However, only extracts from Pseudoalteromonas rubra showed cytotoxic effects on Vero cells. Three compounds were identified by LC/MS after purification from culture supernatant.

4.
PLoS One ; 14(3): e0213797, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30875400

RESUMO

Tunicates (Ascidians, sea squirts) are marine protochordates, which live sedentary or sessile in colonial or solitary forms. These invertebrates have to protect themselves against predators and invaders. A most successful strategy, to not being eaten by predators and prevent pathogenic microorganisms to settle, is the usage of chemical molecules for defence. To accomplish this, tunicates take advantage of the specialized metabolites produced by the bacteria associated with them. Therefore, the microbiome of the tunicates can be regarded as a promising bioresource for bacterial strains producing compounds with antibacterial activity. The aim of this study was to test this hypothesis by (i) isolation of tunicate-associated bacteria, (ii) analysis of the antibacterial activities of these strains, and (iii) purification and structure elucidation of an active compound derived from this bioresource. In total, 435 bacterial strains were isolated and thereof 71 (16%) showed antibacterial activity against multidrug resistant (MDR) bacteria. Therefrom, the ethyl acetate crude extracts from liquid fermentations of 25 strains showed activity against MDR Extended-Spectrum Beta-Lactamase (MDR-ESBL) Escherichia coli, MDR Bacillus cereus, Micrococcus luteus, and Bacillus megaterium. Phenotypic analysis based on 16S rDNA sequencing revealed the active strains belonging to different genera and phyla, like Bacillus, Pantoea, Pseudoalteromonas, Salinicola, Streptomyces, Vibrio and Virgibacillus. To obtain first insights into the molecules responsible for the antibacterial activities observed, strain Pseudoalteromonas rubra TKJD 22 was selected for large-scale fermentation and the active compound was isolated. This allowed the purification and structure elucidation of isatin, a compound known for its strong biological effects, thereunder inhibition of Gram-positive and Gram-negative pathogens.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Urocordados/fisiologia , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Metaboloma , Testes de Sensibilidade Microbiana , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...